

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year II Semester Regular Examinations October-2020 ADVANCED STEEL DESIGN

(Structural Engineering)

Time: 3 hours

Max. Marks: 60

6M

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

A simply supported beam of span 6m is subjected to UDL of 20 KN/m. Design a steel 12M beam by plastic design using a combined load factor of 1.7.

OR

- 2 a Explain about Idealized stress-strain curve for mild steel.6M
 - **b** Explain fully plastic moment capacity.

UNIT-II

3 A hat of 100mm x 80mm x 5mm section with a 30 mm lip is to be used as 12M concentrically loaded column of effective length 4.0 mm. Determine the allowable load. Take $f_y = 235 \text{ N/mm}^2$

OR

4 Design a hat section for a simply supported beam of effective span 2.5m. The 12M superimposed load is 2KN/m. Yield strength of steel is $f_y=235MPa$.

UNIT-III

5	a List out the various uses of steel towers.	6M
	b List out the types of towers & Explain briefly.	6 M
	OR	
6	Briefly explain about the various structural configurations adopted in towers with neat	12M
	diagrams. Also explain about the types of bearing systems adopted in towers.	
	UNIT-IV	
7	Briefly explain the various steps involved in the design of roof trusses.	12M
	OR	
8	Design a purlin section for the following data	12M
	Spacing of roof trusses $C/C = 5m$	
	Dead load of roofing = 0.5 kN/m	
	Live load on purlin = 1.1 kN/m	
	Wind load on $Purlin = -1.5 kN/m$	

UNIT-V

9 Design a steel roof truss shown in Figure 1 for a clear span of 12.0 m. the truss is 12M supported over masonry columns 45 cm x 45 cm trusses are placed 3 m c/c and support galvanized iron sheet on rafters and steel purlins. The rise of the truss is 1/3 of span. The design wind pressure may be assumed to be 1000N/m²

OR

10 Describe and design a simply supported gantry girder to for the following data:
12M Crane capacity : 160 KN
Self weight of crane girder : 200 KN
Self weight trolley, electric motor, hooks etc. : 50KN
Min. approach of crane hook to the gantry girder : 1.6 m
Wheel base : 2.8 m
c/c distance between gantry rail : 12 m
c/c distance between column : 6m
Self weight of rail section : 300 N/m
Check the section for maximum bending moment due to vertical forces, lateral forces and longitudinal forces.

*** END ***